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Abstract

We present a method for analyzing the molecular scale orientation and structure of processed polymers using wide angle X-ray scattering
data (WAXS). The technique is applied to the analysis of solution-spun fibers of a liquid crystalline polyester comprised of 1,4-hydro-
xybenzoic acid, isophthalic acid, and hydroquinone. The orientation distribution function (ODF) of the non-crystalline component of the
polyester is constructed using a Legendre polynomial series expansion. To construct a consistent molecular scale description, a Monte Carlo
sampling scheme which incorporates the standard Metropolis sampling was employed, coupled with a weighting factor that favors structures
which are in closer accord with the experimental WAXS data. The members of the ensemble sampled by the simulation consist of rhombic
lattices on which oligomers are placed in an aligned state. The conformation of each oligomer was obtained using a rotational isomeric state
description. By direct comparison of the experimental and calculated structure factor coefficients, the ODF for the structural ensemble was
deduced. For the polyester fiber considered here, a two-component system consisting of oriented and unoriented non-crystalline components
is required for complete characterization of the scattering properties of the sample. The sample contains a negligible amount of crystalline
material, but 85% of the sample is aligned locally (i.e. with respect to nearest neighbor chains). However, as the fibers are spun from an
isotropic solution, the global orientation (i.e. orientation with respect to the sample axis) remains low.q 1999 Elsevier Science Ltd. All rights
reserved.

Keywords:Wide angle X-ray scattering; Orientation distribution function; Molecular simulations

1. Introduction

Post-synthesis processing of polymers has a huge impact
on the bulk properties, such as tensile strength and modulus,
observed in engineering materials. In many cases, the
morphology is altered all the way down to the molecular
scale. This is generally true of polymers, and is especially
important in cases such as fiber spinning, where very high
process rates and flow stresses induce large changes in the
morphology of the final product on all length scales. One
class of polymers where molecular orientation is known to
have a predominant role in determining properties is liquid
crystal polymers (LCPs), which are used for high strength,
high modulus applications. These include lyotropic LCPs,
such as the aramids Kevlartm and Nomextm, and thermotro-
pic LCPs such as Vectratm and related copolyesters. In this
work, we focus our attention on a class of copolyesters

composed ofx mol% 1,4-hydroxybenzoic acid (H) and
(100 2 x)/2 mol% each of isophthalic acid (I) and hydro-
quinone (Q), which we denote as HIQ-x. This copolyester is
thermotropic in the range 20, x , 80; between 20, x ,
50, liquid crystallinity is exhibited within a window of about
508C [1,2]. It is also soluble in a mixed solvent of dichlor-
omethane and trifluoroacetic acid [3].

HIQ-x has been studied fairly extensively by wide angle
X-ray scattering (WAXS) [1,2,4–6] for the purpose of
determining crystallinity and crystal structure. WAXS is
also useful for analyzing the orientation distribution of the
crystalline component in highly oriented melt-spun fibers.
To date, X-ray analysis on HIQ-x has focused on elucidating
the unit cell structure of HIQ-33 and HIQ-50 fibers [1,2,4].
For the HIQ family of polymers, Erdemir et al. proposed an
orthorhombic fiber unit cell witha � 5.58 Å, b � 3.92 Å,
andc � 24.32 Å (r � 1.49 g/cm3) [5]. A similar unit cell
was reported by Blundell [1]. The HIQ-x powder unit cell
(20 , x , 80) was shown experimentally to be very similar
to that of poly(p-phenylene isophthalate) (HIQ-0) [2,7].
O’Mahoney et al. investigated single crystals of model
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compounds to study the higher order scattering reflections
[6]. They concluded that bis(4-benzoyloxyphenyl) isophtha-
late is a good model for HIQ-x. HIQ-x has also been inves-
tigated using NMR by a number of groups. Gerard et al.
[8,9] and Wiesner et al. [10] have investigated the local
dynamics of various HIQ-x compositions in isotropic solu-
tions and unoriented powders using13C NMR. They
concluded that the ring mobility of the monomers is highly
restricted and that decreasing the ring mobility correlates
with higher sample crystallinities. Rutledge and Ward
used solid-state1H NMR to study the orientation in HIQ-x
on the molecular- scale [11]. Liao and Rutledge have used
natural abundance, multi-dimensional, solid-state13C NMR
techniques to investigate the orientation in HIQ-35 materi-
als. They characterized the orientation distribution of the
constituent monomers using a combination of anisotropic
(Gaussian shaped) and isotropic functions [12].

RIS calculations [11,13] and structure factor calculations
for arrays of extended chains [5,14–16] have also been
employed to characterize the molecular conformation of
HIQs. Simulation work on HIQ-x has focused primarily
on the single chain and crystalline packing structures of
the material. Johnson et al. determined chain conformations
in HIQ-x in fibers by matching experimental WAXS peaks
along the meridian with the calculated structure factors for
single chains and planar arrays of chains [5,14–16]. They
concluded that the chains of HIQ-x display planar zig-zag
conformations comprised of rod-like sections joined by
isophthalate ‘‘hinges.’’ This zig-zag formation is necessary
for the proper extinctions to occur in the scattering pattern.
Johnson et al. also suggested that the planarity of the chain
conformations mitigates some of the modulus-degrading
effects associated with the introduction ofm-phenylene
moieties. To model the conformational behavior of polyar-
ylates, including HIQ-x, we have previously reported an RIS
description for aromatic polyesters [13]. For compositions
approachingx� 100 (i.e. poly(p-hydroxybenzoic acid)), the
theoretical stiffness, persistence length, and shape aniso-
tropy of the chains rise dramatically.

While considerable attention was given to describe single
chain conformations and crystalline structure of HIQ-x,
relatively little attention has been paid to the solid-state
non-crystalline structure of these aromatic polyesters. Char-
acterizing both the non-crystalline and crystalline structure
of these polyarylates is necessary for a quantitative descrip-
tion of the molecular-scale structure and its relationship to
macroscopic properties. For HIQ-x, this is particularly
significant because the introduction of ‘‘kinked’’m-pheny-
lene moieties at random in the chain architecture leads to
potentially large deviations from linearity of the chain back-
bone in these otherwise extended molecules. This non-line-
arity has important implications for packing correlation in
the solid state and for the trade-off between tensile and
compressive properties in fibers, films and injection molded
materials.

Pole figure analysis is an established technique for

measuring the orientation distribution of crystallites, and
hence of their molecular constituents [17–20]. However,
non-crystalline material is more problematic. Non-crystal-
line phases often account for more than half of the material
in a processed semi-crystalline sample. Methods such as
birefringence [21] and NMR [11,12] are effective for
measuring the orientation of specific molecular constituents.
However, these methods do not discriminate between crys-
talline and non-crystalline components as effectively as X-
ray diffraction methods do, making their results somewhat
more difficult to interpret in the case of semi-crystalline
polymers. Except in special situations, these methods are
also not very sensitive to the manner in which these mole-
cular constituents are packed, i.e. the distance and orienta-
tion relationship between two constituents on the same or
different molecules, in the solid state. Unlike X-ray scatter-
ing and NMR, birefringence measurements suffer from the
additional limitation that they reveal only the first two
moments of an orientation distribution, limiting their ability
to provide the full orientation distribution function (ODF).
In principle, X-ray diffraction can be used to study the
structure and orientation of molecular level constituents in
non-crystalline material, but the analysis is complicated by
the fact that the observed scattering reflects contributions
due to both intramolecular (conformational) and intermole-
cular (packing) disorder, in addition to misorientation of the
basic structural units. In this paper, we explore the use of X-
ray diffraction methods in combination with molecular
simulations to identify a reasonable representation of the
scattering unit, as an ensemble of scatterers, and its orienta-
tion in processed polymer solids.

Several previous investigations have used small angle
and wide angle X-ray scattering to deduce structural infor-
mation about non-crystalline material in polymers. Bartczak
et al. and Galeski et al. [22,23] investigated uniaxially
deformed specimens of both polyethylene and Nylon-6,6
processed in plane strain compression. They used pole
figure diagrams to analyze the orientation in crystalline
and non-crystalline portions of their samples and deduced
the mechanical deformation mechanisms responsible for the
development of orientation. For both polymers, deformed
up to compression ratios of 6.44, they observed the devel-
opment of a hexagonal arrangement of chains, like ‘‘mole-
cular cylinders’’, in the non-crystalline material. Pieper and
Killian [24] have also proposed a model wherein chain
segments are treated as ‘‘molecular cylinders’’ which
constitute the primary structural units of the non-crystalline
solid. These structural units were then considered to arrange
parallel to each other with varying degrees of lateral disor-
der to form cylindrically symmetric monodomains, which in
turn constitute the macroscopic solid or melt. Murthy et al.
[25,26] employed maximum entropy methods and modified
Lorentzian peak shapes to deconvolute crystalline and
non-crystalline WAXS scattering in a number of semi-
crystalline polymers, such as poly(ethylene terephtha-
late), polyethylene, and Nylon-6,6. They characterized
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the non-crystalline orientation in terms of an isotropic
and an anisotropic portion. Fu et al. [27–29] deconvo-
luted the WAXS fiber patterns of PET fibers using a
three component model and demonstrated the need for
whole-pattern fitting for the crystalline portions of the
pattern. They measured non-crystalline orientation in
terms of a single parameter,kP2(cosf )l, for the most
intense non-crystalline feature only. Iannelli [30,31]
studied semi-crystalline poly(aryl-ether-ether-ketone)
and polyisobutylene with WAXS using a two-dimen-
sional Rietveld analysis. In order to separate the crystal-
line and non-crystalline contributions, he assumed a
Gaussian peak shape for the non-crystalline component.
These studies reveal the value of information contained
within both oriented and unoriented non-crystalline
material, as well as highlight the problems associated
with analyzing WAXS data for structure in poorly
resolved patterns. In each case, however, the non-crys-
talline features of the pattern were characterized, and
subsequently analyzed, using prescribed peak shapes.

Mitchell and co-workers [32–35] have developed a
systematic approach for obtaining cylindrical distribution
functions (of electron density) from WAXS of oriented,
non-crystalline polymer, and from this the orientation distri-
bution of chain segments. The cylindrical distribution func-
tion was conveniently expanded as a series of Legendre
polynomials. The scattering observed from a distribution
of independent structural units may be expressed as the
convolution of the orientation distribution for the units
with the scattering from a single unit [36]. Using this, and
the assumption that chain segments could be treated as inde-
pendent scatterers, Mitchell and Windle computed the theo-
retical structure factors for chain segments in various
conformations. They then compared these with the observed
scattering, at large scattering angles where interchain pack-
ing contributions are less important. From this comparison,
they obtained an ODF for the chain segments. This approach
was applied to poly(methyl methacrylate) [33,35] and to a
liquid crystal copolymer composed of ethylene terephtha-
late andp-acetoxybenzoic acid [34]. Our approach employs
a similar deconvolution of the scattering pattern into orien-
tational and structural contributions. The identification of an
ODF for a non-crystalline polymer depends critically on the
identity and structure of the scattering unit, including inter-
chain packing correlations. For this purpose, we devise a
Monte Carlo simulation which samples the average scatter-
ing from an ensemble of molecular scale structural units.
The simulation is constructed in a manner which selects
units from an equilibrium ensemble such that the total calcu-
lated scattering function converges to the observed scatter-
ing.

This paper is organized as follows. In Section 2, we
review the analysis of the WAXS fiber pattern in
terms of cylindrical distribution functions, expressed as
a series of Legendre polynomial terms. We then describe
our model of the scattering unit in the solid state and the

determination of both the structure and orientation distribu-
tion function for this scattering unit. In Section 4, we illus-
trate this approach with application to solution-spun fibers
of HIQ-40. Finally, we discuss the implications of this
analysis.

2. Methodology

2.1. Experimental data deconvolution

The analysis of oriented polymers by X-ray scattering
methods is simplified by description in terms of angular
coordinates. In general, the scattered intensity,I(s,a ,b ), is
a function of the magnitude of the scattering vector,s, and
the Euler angles,a andb [37,38], relating its orientation to
the frame of observation. Expansion of this general descrip-
tion in terms of suitable basis functions permits straightfor-
ward analysis. For the general case of scattering from an
anisotropic sample, spherical harmonics have been
suggested by Hobson [39] and frequently used [40–43].
For the purpose of the present analysis, involving samples
exhibiting fiber symmetry,I(s,a ) only, a simpler description
using Legendre polynomials is adequate. Although of
general utility in principle, the Legendre polynomial series
expansion is most useful for smoothly varying functions
with moderate degrees of orientation; higher degrees of
orientation require determination of more terms and coeffi-
cients in the expansion, which can ultimately become
problematic.

Fig. 1 illustrates the basic steps in the analysis presented
here. This figure highlights the fact that a number of correc-
tions to the experimental data are required before compar-
ison to the model structure factor calculations. Fig. 1
summarizes the type of information needed to account for
instrumental, geometrical, and structural features in the
data. We used an amorphous reference, either simulated
or experimental, to determine the geometrical and instru-
mental corrections to the experimental data. Using methods
similar to those employed by Murthy et al. [25,26], the
experimental data are then separated into crystalline and
non-crystalline portions. The data are then renormalized,
so that they may be compared to theoretical structure factor
calculations. We describe the non-crystalline portion using
the Legendre polynomial series expansion. Lastly, we intro-
duce a molecular model with explicit atomic coordinates
and calculate a theoretical structure factor. The theoretical
structure factors are compared to those of experiment and, if
the agreement of scattering features is reasonable, the model
is accepted as a molecular level description for the material.
As we are dealing with the non-crystalline portion of the
WAXS pattern, we construct anensembleof molecular
scale structures to represent the system’s oriented non-crys-
talline component. The relationship between the theoretical
and experimental structure factor coefficients is quantified
in the ODF.
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The observed scattering intensity from the non-crystalline
portion of an oriented polymer sample,Iex,a(s,a ), is sepa-
rated into structural and orientational contributions, and the
latter is expanded in terms of the basis functions:

Iex;a�s;a� �
X∞
n�0

A2n�s� P2n�cosa�; �1�

where the structure factor coefficient traces,A2n(s), are
defined from the orthogonality of the basis functions as:

A2n�s� � �4n 1 1�
Zp=2

0
Iex�s;a�·P2n�cosa�sina da �2�

where A2n(s) are the functions of the scattering vector
magnitudes, and therefore depend only on the structure of
the scattering unit and not on its orientation. In Eqs (1) and
(2), a is the azimuthal angle, measured with respect to the
fiber axis in this case.P2n(cosa ) are the Legendre polyno-
mials of even order, 2n, wheren� 0,1,2,…, and are used to
construct the orientation distribution function,D(a ). Due to
symmetry, only even terms in the series contribute to the
observed intensity and have been retained in Eq. (1). For

semi-crystalline polymers in general, it is necessary to
distinguish between the crystalline contribution,
Iex,x(s,a ), and the non-crystalline contribution,Iex,

a(s,a ), to the total observed scattering intensity. This
is often possible using conventional methods of WAXS
analysis to determine the contribution from crystalline
material [17,18,25–31], and then taking the difference
between the observed intensity and that attributed to crystal-
lites to obtainIex,a(s,a). For the fibers analyzed here, the
crystallinity as measured by WAXS is negligible, and
accounting for this component of the scattering was not
necessary.

Given a simple model for the independent structural unit
responsible for X-ray scattering, one can compute a theore-
tical structure factor and the coefficient traces,Acalc

2n �s�: From
the convolution of the theoretical structure factor coefficient
with an orientation distribution function,D(a ), to obtain the
observed structure factor coefficient, one obtains the relation
between two traces:

A2n�s� � 4n 1 1
4p

D2n·Acalc
2n �s� �3�
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The scaling factors,D2n, yield the coefficients in the basis
set expansion for the orientation distribution function,D(a):

D�a� �
X∞
n�0

4n 1 1
4p

Dn·P2n�cosa� �4�

where:

2p
Zp

0
D�a�sina da � 1 �5�

Note that the scaling factors relating the coefficient traces
in Eq. (3) are scalars which affect the magnitude, but not the
shape, of the calculated coefficient traces. A trace-by-trace
comparison ofA2n(s) with Acalc

2n �s� provides a rapid, qualita-
tive assessment of the validity of the model assumed in
order to computeAcalc

2n �s�. Further, discrepancies observed
in certain traces can offer guidance in how to refine the
model. The construction of a suitable model, which is
discussed in the next section, may involve only a simple
conformational averaging of single chains, as was done by
Mitchell and co-workers [33–35] or it may require intermo-
lecular coordination statistics, such as that invoked by
Pieper and Killian [24]. The better the agreement between
the experimentally observed structure factor coefficient
traces and their theoretically calculated counterparts, the
more confidence one may place on the scaling factors,D2n.

Up to this point, we have implied that two components
may be needed to describe a polymer solid, crystal and non-
crystal. In semi-crystalline polymers, there may be multiple
crystal forms, or polymorphism, the presence of which may
be deduced from the crystal diffraction pattern based on
indexing of peaks. However, it is also possible that more
than one type of structure exists in the non-crystalline phase
as well, depending on how one chooses to model the non-
crystalline component. As we assume that the oriented non-
crystalline material exhibits local alignment of chains, we
also allow for a second, isotropic non-crystalline material
which is free of such local alignment. This unoriented mate-
rial contributes only to theA0(s) term in the basis set expan-
sion for scattered intensity. A priori, we do not know the
relative contribution of the unoriented non-crystalline phase
to theA0(s) trace; however, it is not assumed to be negligi-
ble.

2.2. Molecular model of scattering unit

The scattering unit for an oriented, non-crystalline
component should consist of an ensemble of anisotropic
units. Previous workers have assumed the smallest repre-
sentation of independent scatterers to be the chains them-
selves [33]. There, the ensembles consisted of short sections
of a chain of representative composition, usually in a statis-
tically-weighted set of conformations as determined by
equilibrium considerations, such as in rotational isomeric
state (RIS) modeling. By considering only short sections
of chains, and performing the ensemble average over statis-
tically independent, but completely aligned, segment

conformations (e.g. parallel end-to-end vectors), the chain
segment scattering unit retains anisotropic character. In this
work, we wish to explore the effect of packing correlation
between chains and deviations of the single chain confor-
mation distribution from its ideal (e.g.u -state) distribution
due to the effects of packing with other chains. For this
purpose, we construct small, atomistically-detailed struc-
tures consisting of segments of several chains with several
monomers per segment. We rely on a Monte Carlo scheme
to sample the appropriate distribution of such structures in a
manner which is both consistent with packing constraints,
and yet reproduces the observed scattering behavior.

To construct our molecular model, we first build sections
of the polymer chain with conformations according to their
single chain statistics. Consistent with previous work, we
have employed an RIS description (i.e. chains have fixed
bond lengths, fixed bond angles and discrete isomeric
torsion states for each bond) for the chain conformations.
An RIS parameterization for aromatic copolyesters of
various compositions has been reported previously [13]
and is used here for HIQ-x. In this model, the aromatic
rings are treated as rigid moieties. The ester group is
believed to exist predominantly in the planartrans state.
However, estimates of persistence lengths for numerous
polyarylates indicate that a singletrans state for this bond
tends to overestimate the rigidity of the chain [13]. For this
reason, the ester torsion was allowed to take values between
^ 308 from trans with equal probability. Rotation about a
ring-carbonyl carbon bond may be eithercisor trans(carbo-
nyl coplanar with ring). Rotation about a ring-ester oxygen
bond may take any one of the four isomeric states (^ 458,
^ 1358) with equal probability, each rotating the ester group
458 out of the plane of the neighboring aromatic ring. These
angles were derived from single chain quantum chemistry
calculations; experimental data and Monte Carlo simula-
tions on copolyesters in the solid state suggest that these
angles are usually closer to 608–708 out of plane [44] due
to thermal motion and packing interactions [45]. However,
this correction was not taken into account here. The persis-
tence length for HIQ-x in the range 30, x , 50 was esti-
mated to vary from six to eight monomers (33-44 A˚ ) in
length. On a length scale shorter than this, the molecular
segments are highly anisotropic and may be aligned; as
described previously [11], we computed the radius of gyra-
tion tensor for each generated conformation, and then aver-
aged the conformations with the major axis of this tensor
parallel for all conformations. Up to this point, our single
chain model for the scattering unit is comparable to those
described earlier.

To evaluate the role of interchain packing on the scatter-
ing unit, we not only consider the isolated chain segments,
but also the collections of segments packed together on a 2D
lattice lateral to the alignment direction. Chain segments of
different conformations are generated according to their
Boltzmann-weighted probability within the RIS approxima-
tion and placed on each site of the 2D lattice with their
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centers of mass on the lattice points. The major axis of the
radius of gyration is aligned parallel to the unique axis of the
model and the chain is rotated by a random setting angle
about its alignment axis. The lattice itself is expected to be
close to hexagonal [19,20,22,24,46], but the three para-
meters required to define the lattice periodicity (two lattice
distances,a and b, and the angleg between them) were
varied from model to model. Statistical distortions of the
lattice, such as Hosemann’s paracrystallinity, were consid-
ered only approximately, as follows. Each chain was placed
on the lattice with displacement of its center of mass from
the lattice site taken from uniform distributions between̂
Da and ^ Db. For lattice sites beyond the cut-off of the
lattice size, the segments are assumed to be completely
uncorrelated with the lattice, making no contribution to
the structure factor of the scattering unit. The primary effect
of the local distortions is to attenuate intensity in the peaks,
as in Type I paracrystallinity [47,48]. Truncation of the
lattice serves as a crude approximation to the gradual loss
of correlation described by Type II paracrystallinity and
similar types of lattice statistics. By varying the number
of chain segments, the number of monomers per segment,
the spacing and angle between chains on the lattice, and
distortions about the local lattice positions, we explore
different models for the scattering unit in the presence of
interchain packing interactions.

In order for Eq. (3) to hold, the structure factorAcalc
2n �s� of

the scattering unit must be cylindrically symmetric and was
computed using the following equation [17,40,41]:

Acalc
2n �s� � 4n 1 1

N

XN
j

XN
k . j

fj�s� fk�s� J2n�rjks� P2n�cosajk�

�6�
where the double summation runs over all pairs of atoms in
the current structure,fj(s) andfk(s) are the atomic scattering
factors for atomsj andk, respectively,J2n(rjks) is the Bessel
function of order 2n, rjk is the distance between atomsj andk
anda jk is the angle between the vector connecting atomsj
andk and the axis of alignment. It is important to recognize
that the scattering unit of the non-crystalline component is
not a single structure, but rather an average over an ensem-
ble of structures. Our ensemble consists of structures
derived from the configuration space defined by the afore-
mentioned model construction. In order to sample the
ensemble, we employ a simple Metropolis Monte Carlo
algorithm. The energy,Enew, of each newly generated struc-
ture is calculated and the structure is accepted or rejected
according to the standard Metropolis criterion:

p� min�1; exp�2bT�Enew 2 Eold��� �7�
wherebT is 1/kBT. As the individual chain conformations
are generated according to their proper statistical probabil-
ities from the RIS parameterization, only the interchain
energy is included in the Metropolis criterion. In this
work, we have used a simple hard-core potential for

interatomic interactions between chain segments. Structures
in which atomsj andk on different segments are separated
by less than the sum of their hard core radii,djk , (dvdw,j 1
dvdw,k)/2, are rejected, (Enew� ∞), while those without any
such overlaps are accepted, (Enew� 0). In this way, struc-
tures involving unfavorable packing interactions are elimi-
nated from the structure factor average of the scattering unit.
With the crude interatomic potential used here, the inverse
temperature of the simulation,bT, may take any non-zero
value.

Due to the influence of processing, the ensemble of struc-
tures comprising the non-crystalline component may not be
representative of the equilibrium distribution described by
Boltzmann weights. We have no way to know a priori to
what extent the distribution of states is distorted from equi-
librium. To reflect this distortion, we modify the Metropolis
criterion to bias acceptance in favor of structures which
improve the agreement between the theoretical and
observed structure factors:

p� min�1;exp�2bT�Enew 2 Eold��·exp�2bx�x2
new 2 x2

old���
�8�

where x2
i is the sum of squared deviations between the

theoretical and experimental structure factors computed at
samplei. It serves a role analogous to a thermodynamic
energy in the Monte Carlo sampling, but it is not of thermo-
dynamic origin. It provides a ‘‘measure of merit’’ by which
the distribution of states sampled in the simulation is biased
to obtain better correspondence between the model and
experimental structure factors. Such biasing is necessary
in order to compensate for the effects of processing history,
which alter the distribution of microstates from that
expected in the absence of such memory.x2

i is computed
as follows:

x2
i � 1

iN 0
Xi

k�1

XN 0
n�0

Zsf

s0

�A2n�s�2 D 02n;i Acalc
2n;k�s��2 ds �9a�

x2
i � 1

N 0
XN 0
n�0

Zsf

s0

k�DA2n�s��2li ds �9b�

wheres0 andsf are the limits of available data;N0 indexes
the highest term retained in the truncated series expansion.
In order to computex2

i by this equation, the theoretical
structure factor coefficient traces must be scaled for compar-
ison. At each step, theD 02n’s are chosen such that they
minimizex2

i for the total ensemble, hence giving the highest
probability for acceptance.bx is a weighting factor which
moderates the influence of the bias function inx2

i : It is
analogous to an inverse ‘‘temperature’’. Forbx equal to
zero, the simulation reverts to the standard Metropolis
Monte Carlo with Boltzmann statistics. As the value ofbx

is increased, the simulation becomes more like a numerical
refinement technique, wherein only those structures which
improve the global fit of the simulation to the observed data
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are retained. A reasonable upper bound forbx may be
related to the statistical error of the experimental data
which the model attempts to describe, e.g.bx � 1=2s2 if
the error is assumed to be normally distributed with standard
deviations . Intermediate values ofbx may be chosen to
adjust the weight of the experimental data relative to the
energy calculation in the ensemble sampling. It should be
noted that, in contrast to the usual Markov chain used in
Monte Carlo simulations, the bias function implemented
here depends on all previously accepted statesk , i in the
simulation, ani-th order Markov process. This was chosen
because the observation on which the bias function is based,
the structure factor, is itself a distribution which reflects the
contributions from all the elements of the ensemble. Thus,
x2

i is path-dependent and a property of the entire simulation
rather than of a particular member of the ensemble.

3. Analysis of HIQ-40 fibers

3.1. Experimental

The method described in the previous section is demon-
strated by the application to a sample of HIQ-40 fibers spun
from an isotropic solution of 20% dichloromethane and 80%
trifluoroacetic acid. The fibers were provided by Hoechst–
Celanese (Summit, New Jersey) and are analyzed ‘‘as-
spun’’ without any post-processing heat treatment. The
fibers are 42.6̂ 0.6mm in diameter as measured by optical
microscopy. The experimental WAXS fiber pattern was
collected using a Rigaku RU200B rotating copper anode.
The wavelength of radiation for the CuKa emission is
1.54 Å. Scattering data were taken over an angular range
of 2u � 108–508 in steps (D2u ) of 0.18. A pole figure attach-
ment on theu /2u goniometer allowed us to take sixteenu /
2u traces over the entire azimuthal angular range,a � 08–
908 with Da � 68.

The raw data were normalized to atomic units (a.u.), a
measure of the theoretical scattering power of the material
on a per atom basis, using the method reported by Krogh–
Moe [49], also employed by Mitchell and Windle [33,35].
The normalization factor,kk-m, was determined using the
following relation:

kk-m�

Zsf

s0

s2 I 0�s� ds2 2p2ZrZsf

s0

Z�p=2�
0

s2 Iraw�s;a�sina da ds
�10�

The numerator represents the integrated intensity of the
total uncorrelated scattering,I 0(s), which comprises both the
coherent self-scatter,Sf2(s), and the incoherent Compton
scatter,Icomp(s), of all the atoms in the specimen.I 0(s) is a
function of sample composition only, and was computed
using standard relations [50]. From the integral ofI 0(s),
we subtract the zero-angle scattering intensity;Z is the
total electron charge andr , the atomic density of the mate-
rial. The denominator of Eq. (10) is the total integrated
intensity of the experimentally observed scattering,
Iraw(s,a). The experimental data were then multiplied by
kk-m to express the intensity in a.u., from which the electron
gas and Compton scattering were subtracted to obtain
Iex(s,a ), an interference function which represents the devia-
tion of the scattering function from that of the homogeneous
electron gas:

Iex;a�s;a� � kk-mIraw�s;a�2 Icomp�s�2
X

f 2�s� �11a�

Iex;a�s;a� � kk-mIraw�s;a�2 I 0�s� �11b�
where Iex,a(s,a ), the adjusted experimental intensity,
contains both positive and negative regions as it represents
a re-allocation of scattered intensity about a mean (the
uncorrelated scattering), due to the presence of atomic-
level structure. This interference function was then decon-
voluted into a series of Legendre polynomial terms and their
corresponding structure factor coefficient traces, as
described in Section 2. The noise level in the data ultimately
places an upper bound on the number of terms which may
reasonably be evaluated; we chose to extend the series until
the square root of the sum of squared deviations between the
calculated and experimental patterns was less than 10% of
the total integrated intensity of the pattern.

For the determination ofAcalc
2n �s�; the model consisted of

N2
l chain segments, eachm units long place on an Nl × Nl

lattice. We considered lattices with up to 25 chains, each
chain being up to 15 monomers long. Monomers were
chosen at random to construct each chain segment, subject
to the constraints that only appropriate ester linkages
between monomers were formed and that the overall
sampled composition of structures in the model was 40%
1,4-hydroxybenzoate, 30% isophthalate and 30% hydroqui-
none. The conformation of each segment was selected
according to the RIS model described previously [13].
Lattice distances,a and b, were tested between values of
3.0 and 6.0 A˚ with 0.25 Åsteps. The local displacements of
the chains about the average lattice positions were allowed
to vary uniformly up to^ 50% of the lattice spacing itself
(i.e. Da � a/2, Db � b/2). The result is a fairly disordered
‘‘lattice’’. The lattice angle,g , was tested over values of
60–908 with 108 steps. van der Waals radii for each atom
type used in the model were obtained from the cvff force-
field [51] and are shown in Table 1. The critical overlap
distance was taken to be a fraction of the sum of van der
Waals radii,djk , Kvdw·(dvdw,j 1 dvdw,k)/2, whereKvdw � 0.5
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Table 1
The van der Waals radii for the various atom types in our simulations. Cph is
a phenylene ring carbon, C*, a carbonyl carbon, O0, a carbonyl oxygen, O,
an ether oxygen, and H, a hydrogen

Atom type Cph C* O 0 O H

dvdw (Å) 1.96 2.03 1.60 1.60 1.37



was used in most cases. The weight factor,bx , used here
was 1.2× 1023. Thus, the distribution sampled should be
close to the thermodynamic one, and only weakly biased to
match the data. Due to the length of calculation of structure
factors at each step, the simulations were short by Monte
Carlo standards, typically between 0.5× 104 and 1× 104

structures, with acceptance rates of the order of 10%.

3.2. Results and discussion

The results of the experimental data analysis for the HIQ-
40 solution-spun fibers are illustrated in Fig. 2.Iex,a(s,a )
(� Iex(s,a ) for these fibers) obtained from Eqs. (11a) and
(11b) is shown in Fig. 2(a). A series expansion in Legendre
polynomials up to ordern� 3 was found adequate to repre-
sentIex,a(s,a ) according to Eq. (1) and is shown in Fig. 2(b).
Fig. 2(c) shows the difference pattern between the original
and reconstructed experimental interference patterns, which

is essentially featureless, and Fig. 2(d) shows the individual
structure factor coefficient traces,A2n(s), up to n � 3. The
relatively rapid convergence of the series confirms the low
level of orientation in these fibers.

Three features located at 20.38, 27.18 and 44.68 in 2u (s�
1.436, 1.909 and 3.091 A˚ 21, respectively) are consistent
from trace to trace (Table 2). The presence of these three
features in the higher order (n . 0) traces indicates that
these must be characteristic of the scattering unit present in
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Fig. 2. Reconstruction of HIQ-40, as-spun, solution spun fiber. (a) raw data, 16 contours; (b) reconstructed data from the Legendre polynomial series
expansion, 16 contours; (c) difference spectrum, 3 contours; (d) experimental coefficient traces,A2n(s) for 2n� 0–6. All contour plots have two counts/contour.

Table 2
Summary of spacings in experimental coefficient traces for HIQ-40 as-
spun, solution-spun fibers

2u(8) d (Å) s (Å21)

Peak 1 20.3 4.375 1.436
Peak 2 27.1 3.291 1.909
Peak 3 44.6 2.033 3.091



the oriented, non-crystalline component of the polymer.
They were used to reject models wherein these features
were either shifted or of different breadth from the
experimental observations. Using the molecular model and

searching the parameter ranges outlined before, the peak at
s � 3.091 Å21 was found to be an intrachain scattering
feature and most sensitive to conformational characteristics
of the RIS model. By varying the length and flexibility of
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Fig. 3. Comparison of experimental and calculated structure factor coefficient traces for HIQ-40 as-spun, solution-spun fibers, (a)A0(s) coefficients, (b)A2n(s)
coefficients (2n � 2,4,and 6)



the chain segments, this peak could be reproduced in each
trace. The peaks ats� 1.436 and 1.909 A˚ 21 are predomi-
nantly interchain scattering features and were reproduced by
varying the number of chains and parameters of the lattice.
The best overall results were obtained with a model consist-
ing of dimer segments on a 3× 3 lattice witha� 4.25 Å, b�
3.75 Å, andg � 808. This model yielded theoretical coeffi-
cient traces with the proper features observed in the experi-
mental data out to theA6(s) term. Using Eq. (3), the higher
order scaling coefficients,D2n, (n . 0) were determined by
minimizing the sum of squared deviations between the
observed trace and the scaled model trace. The agreement
between the observed and calculated traces forA2(s), A4(s),
and A6(s) are shown in Fig. 3(b). The divergence of the
Acalc

2n �s� curves ass approaches zero is an artifact of the
small size of the model cluster of chains.

After identifying a suitable model to describe the higher
order coefficient traces, we found that the isotropic coeffi-
cient trace,A0(s), was still not adequately reproduced in
terms of relative heights and breadths of the three main
features. To compensate for this shortcoming, we concluded

that a second, isotropic scattering component must be
present in the fibers, whose structure does not possess
local alignment of chain segments. This isotropic material
was modeled using conventional molecular simulations. A
cubic, amorphous cell with sides measuring 20.96 A˚ was
packed with 50-mer chains of HIQ-40 to a density of
1.35 g/cm3 [52]. The amorphous cell was constructed
using the polymer modules of Biosym/MSI [51]. This was
followed by NVT molecular dynamics simulations using
Discover v3.2b with the cvff force field at 300 K. Tempera-
ture control was maintained using velocity rescaling. The
system was allowed to equilibrate for 50 ps using 1 fs steps
and 10 snapshots of the system were then collected at 100 ps
intervals. The structure factor for the isotropic component of
HIQ-40 was then computed from the average over these 10
structures and is shown in Fig. 4. Interestingly, this simula-
tion also shows three features similar to those observed
experimentally and in the model of the non-crystalline
component, but with different relative intensities and no
orientation dependence.

Finally, theA0(s) trace was fitted using theAcalc
0 �s� trace

determined from the model of the oriented non-crystalline
component and the structure factor for the isotropic non-
crystalline component (Fig. 3(a)). Both the fractions of the
oriented non-crystalline material,XONC, and the zeroth order
scaling factor,D0, for the oriented non-crystalline compo-
nent were varied in order to minimize the sum of squared
deviations between the two-component model trace and the
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Fig. 4. Simulated amorphous structure factor calculation for HIQ-40 from Biosymtm.

Table 3
Scaling coefficients,D2n; x

2
2n for HIQ-40 as-spun, solution-spun fibers

2n 0 2 4 6

D2n 1 0.02 0.003 0.001
x2

2n 4.88 4.09 2.06 1.22



observed experimental trace. The results forXONC and D0

and the scaling factors determined directly for the higher
order contributions are shown in Table 3, along with the
sum of squared deviations,x2

2n; for each coefficient trace.
For each trace,x2

2n is about an order of magnitude smaller
than the maximum value of (A2n(s))

2. From the values of
D2n, the orientation distribution function,D(a ), for the
anisotropic non-crystalline component is reconstructed
and is shown in Fig. 5. The anisotropic portion of the distri-
bution has a FWHM of 64.68 and is only weakly oriented.
However, the oriented non-crystalline component accounts
for over 85% of the scattering. This implies that the chains
in these HIQ-40 fibers exhibit strong local alignment, but
that the global orientation of structures over the entire fiber
is small.

The results reported here suggest that the size of the
oriented non-crystalline domains required to describe inde-
pendent scattering units is small. While some portion of the
non-crystalline phase must be aligned with its neighbors
locally in order to observe anisotropic scattering in the inter-
chain features, this local alignment may be very short-
ranged, e.g. nearest neighbors only. Further, the presence
of a second, isotropic component suggests that a significant
fraction of the material (about 15%) in these as-spun fibers
is not even aligned locally. Although we have treated these
two as separate components for the purposes of averaging,
the very small correlation distances suggests that these two
may be very intimately mixed; the two-component descrip-
tion is a matter of convenience only and is not intended to

imply two distinct thermodynamic phases within the
sample.

The series expansion analysis is most suited for describ-
ing samples with orientation which requires a few terms in
the expansion. These are generally low levels of orientation.
While, in theory, we can study any axisymmetric distribu-
tion and break it down in terms of a Legendre polynomial
series expansion, very narrow distributions (i.e. high mole-
cular orientations) require a large number of terms. For
highly anisotropic systems, such as some products formed
in industrial fiber processes, one can find that the number of
coefficient traces necessary for a proper description of the
orientation can be large. In these cases, the series expansion
is limited in accuracy by the resolution of the experimental
data in the azimuthal direction.

4. Conclusions

We have demonstrated the applicability of the series
expansion analysis to the determination of an ODF and its
associated structural ensemble for characterizing the non-
crystalline component of an axisymmetric fiber sample of an
aromatic polyester. The series expansion requires four terms
(up to n � 3) for adequate characterization. The structural
ensemble deduced from our simulations consisted of dimers
placed on a 3× 3 rhombic lattice. For the aromatic polyester
used in the example, we invoke a two-component system to
account for the features in the experimental WAXS results.
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Fig. 5. ODF for HIQ-40, as-spun, solution-spun fibers.



The two components are oriented and unoriented non-crys-
talline phases of the material. The analysis shows that the
sample contains no detectable crystalline phase, but displays
over 85% locally-aligned material.

We have also demonstrated the applicability of the series
expansion analysis and our general data analysis methodol-
ogy to both conformational and packing behavior in engi-
neering materials. The conceptual advantages of the
analysis are: (i) rigorous definition of the orientation distri-
bution function, (ii) a quantitative correlation between theo-
retical calculation and experiment, (iii) an explicit
interpretation of the structural ensemble, which may be
subjected to further characterization and analysis for proper-
ties, and (iv) the reduced computational load required for
the full pattern analysis, due to the reduction of the full 2D
pattern into a smaller number of one-dimensional coefficient
traces. We have presented a general methodology, which
may easily be extended to other polymeric systems for
orientational analysis under varying processing conditions.
In the companion paper to this one, we apply this analysis to
a set of polyarylate fibers generated by different processes.
Straightforward extensions of the concepts presented here
permit analysis of other polymers and other sample symme-
tries.
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